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SUMMARY

In this contribution we give an overview on recent progress in obtaining a posteriori error control for
finite volume and discontinuous Galerkin approximations of non-linear hyperbolic conservation laws. The
theory is based on the celebrated doubling of variables technique introduced by Kružkov (Math. USSR Sb.
1970; 10:217–243). A posteriori error control is of particular importance as it can be used for designing
efficient grid adaptive schemes. The derivation of such adaptive methods is discussed and numerical
experiments are given. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, we are going to review the victory of Kružkov’s doubling of variables technique
(see [1, 2]) for obtaining rigorous a posteriori error control for approximations of non-linear
conservation laws. As a prototype balance law, consider the Cauchy initial value problem

�t u+∇ ·F(u)=0 in Rd ×R+ (1)

u(·,0)=u0 in Rd (2)

Here u:Rd ×R+ →R denotes the dependent solution variable, F ∈C1(R) the flux function, and
u0∈BV(Rd)∩L∞(Rd) the initial data with u0∈[A, B] a.e. In this presentation we restrict ourselves
to the conservation law (1) without source terms, although also more general situations may be
considered (see [3]).
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334 M. OHLBERGER

It is well known that, in general, classical solutions to problem (1)–(2) do only exist for
finite time, even when the initial data u0 are arbitrarily smooth. On the other hand, weak solutions
are not uniquely defined by their initial data and therefore we have to work in the L1-framework
of entropy solutions [4], i.e. with weak solutions that satisfy a Kružkov–Vol’pert type entropy
condition. In this paper we will use the definition of an entropy weak solution as introduced in [5].
Definition 1.1 (Entropy weak solution)
Let u be a weak solution of (1)–(2). Then, u is called an entropy weak solution if u satisfies for
all entropy pairs (S,FS)∫

Rd

∫
R+

(S(u)�t�+FS(u) ·∇�)dt dx+
∫

Rd
S(u0)�(x,0)dx�0 (3)

for all �∈C1
0(R

d ×R+,R+).

Recall that (S,FS) is called an entropy–entropy flux pair or more simply an entropy pair for
Equation (1), iff S is convex and F ′

S = S′ f ′.
The theory that we will present in this contribution is based on the doubling of variables

technique introduced in the pioneering work of Kružkov [1] where uniqueness of solutions of
scalar conservation laws was shown, i.e. we will work with the family of Kružkov entropies S(u)=
|u−�|,�∈R or with smooth approximations of these. For hyperbolic boundary value problems,
the theory was later on generalized. We refer for instance to the work of Otto [6] and Vovelle [7].

In the context of a priori error estimates for approximations of scalar conservation laws, the
doubling of variables technique is meanwhile broadly used. See, for example, [8–15].

Unfortunately, a priori error estimates mainly give information on the asymptotic convergence
behavior of the approximation scheme but do not provide an error control, as the exact solution
and therefore the constants appearing in the error estimates are not known a priori. Hence, for
error control, it is necessary to derive a posteriori error estimates of the form

‖u−uh‖��h(uh)+Ah (4)

where the indicator �h denotes a computable quantity that only depends on the approximated
solution uh , and Ah stands for data approximation errors.

Cockburn and Gau [16] were probably one first in noticing that the doubling of variables
technique provides in a natural way estimates of type (4). An additional input towards local error
estimates for hyperbolic conservation laws was provided by Eymard et al. [10] and Chainais–
Hillairet [15]. They proved that the error in a given space–time domain can be estimated in terms
of its history in the domain of dependence. This idea was then used in [3] to obtain local a
posteriori error estimates for scalar conservation laws, which were proved to provide a good basis
for designing efficient adaptive solution strategies for the underlying finite volume method.

The rest of the paper is organized as follows. In Section 2 we will discuss the basic approach in
obtaining a posteriori error control for approximation of (1)–(2) within the framework of Kružkov’s
doubling of variables technique. In Section 3 we will state the a posteriori error estimate for finite
volume approximations obtained in [3] for the initial value problem. Concerning initial boundary
value problems, an a posteriori result was recently obtained in [17]. We will give a review of
this result in Section 4. Finally, in Section 5 we state a result on error control for an hp-adaptive
Runge–Kutta discontinuous Galerkin CRK-DG, method of higher order that was recently obtained
in [18]. This result is of special importance as it guarantees a numerical error control for a scheme
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where we do not know any convergence result or a priori error estimate. Finally, in Section 6 we
describe how a posteriori error control can be used to design efficient grid adaptive algorithms.
Some numerical experiments underline the benefits of the resulting adaptive schemes. A section
on a discussion of further results concludes the paper (see Section 7).

2. GENERAL CONCEPT FOR OBTAINING ERROR CONTROL

We introduce a general approach for obtaining error control for approximations of scalar conser-
vation laws. The approach is based on the doubling of variables technique of Kružkov (see [1, 2]).
In essence, this technique enables one to estimate the error between the exact solution u and
approximate solution uh of a conservation law in terms of the entropy residual RS(uh) which is
defined as follows.

Definition 2.1 (Entropy residual RS)
Let v∈L∞(Rd ×R+) be an arbitrary function. Then, corresponding to the definition of an entropy
weak solution, we define the entropy residual RS by

〈RS(v),�〉 :=
∫ ∫

Rd×R+
S(v)�t�+FS(v) ·∇�+

∫
Rd

S(u0)�(·,0) (5)

The following theorem gives a fundamental error estimate for conservation laws independent
of the particular finite volume scheme (see [3, 14, 15]).
Theorem 2.2 (Fundamental error estimate)
Let u0∈ BV (Rd) and let u be an entropy weak solution of (1)–(2). Furthermore, let v∈L∞(Rd ×
R+) be an arbitrary function and let us denote by S(u) :=|u−�| the Kružkov entropy. Suppose
that there exist measures �v ∈M(Rd ×R+) and �v ∈M(Rd) such that RS can be estimated inde-
pendently of � by

〈RS(v),�〉�−(〈|�t�|+|∇�|,�v〉+〈|�(·,0)|,�v〉) (6)

Let K ⊂⊂Rd ×R+, �≡Lip( f ) , and choose T, R and x0 such that T ∈]0, R
� [and K lies within

its cone of dependence D0, i.e. K ⊂D0 where D� is given as

D� := ⋃
0�t�T

BR−�t+�(x0)×{t} (7)

Then, there exist a ��0 and positive constants C1,C2 such that u, v satisfy the following error
estimate:

‖u−v‖L1(K )�T (�v(BR+�(x0))+C1�v(D�)+C2
√

�v(D�)) (8)

The error estimate (8) can be used either as an a posteriori control of the error, as the right-hand
side only depends on v, or it can be used as an a priori error bound if one is able to estimate further
the measures �v and �v using some a priori bounds on v. Finally, note that comparable estimates
to (8) are obtainable in the L∞(0,T ; L1(Rd))-norm (see [16, 18–20]). The proof of Theorem 2.2
relies on the doubling of variables technique of Kružkov and can be found in [3, 14, 15].

With the fundamental error estimate in hand, the main ingredient in obtaining a computable error
control for approximations of (1)–(2) is an explicit knowledge of the measures �v,�v that can be
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336 M. OHLBERGER

obtained by estimating the entropy residual RS . In the case of finite volume approximations with
monotone flux functions such an estimate on the entropy residual can be obtained by exploiting
the discrete entropy inequality that is satisfied by the discrete solution (see [3]). We will state the
resulting a posteriori error estimate in the following section.

3. CELL CENTERED FINITE VOLUME APPROXIMATIONS

Let T={Tj | j ∈ J } be a mesh of Rd such that the interface of two neighboring cells Tj , Tl of T
is included in a hyperplane (see also [3]). The joint edge of Tj and Tl will be denoted by S jl . We
assume that there exists an 	>0 such that we have for all h j :=diam(Tj )

	hdj�|Tj |, 	|�Tj |�hd−1
j (9)

for all j, l∈ J . Moreover, we define h :=max j∈J h j and hmin :=min j∈J h j . We denote by {tn|n∈
I }, I :={0, . . . ,N } a discretization of the time interval [0,T ] with local step sizes �tn := tn+1− tn .
For the numerical fluxes f jl , we impose the following assumption.

Assumption 3.1 (Monotone numerical flux function)
The numerical fluxes are supposed to be functions f jl ∈C1(R2,R) that satisfies for all u,v,u′,v′ ∈
[A, B] the following conditions (monotony, conservation, regularity, consistency):

�u f jl(u,v)�0, �v f jl(u,v)�0, f jl(u,v)=− fl j (v,u) (10)

f jl(u,u)=n jl |S jl |F(u), | f jl(u,v)− f jl(u
′,v′)|�LSjl |(|u−u′|+|v−v′|) (11)

where n jl denotes the outer unit normal to S jl .

With this notation, the cell centered upwind finite volume scheme for computing approximate
solutions to (1)–(2) is defined by following definition.

Definition 3.2 (Finite volume scheme)
Let

u0j :=
1

|Tj |
∫
Tj

u0, un+1
j :=unj −

�tn

|Tj |
∑

l∈N ( j)
f jl(u

n
j ,u

n
l ) (12)

for all n∈N ( j) and j, l∈ J where N ( j) denotes the indices of all neighboring triangles of Tj .
The piecewise constant approximate solution uh is then given by

uh(x, t) :=unj if x ∈Tj , tn < t�tn+1 (13)

The stability of this explicit scheme is ensured under the following CFL-condition (see [3] and
the references therein).

Assumption 3.3 (CFL-condition)
We assume the following CFL-condition, for a given 
∈(0,1):

�tn�
(1−
)	2hnmin

L

where L is the Lipschitz constant from (11).
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Figure 1. Notation and cone of dependence for hyperbolic conservation laws.

The stability condition for the explicit finite volume scheme says that the time step size has to be
chosen proportional to the smallest mesh size. This may lead to very small time steps, if mesh
adaptivity is considered. A possible solution to this is the introduction of local time step sizes in
space. However, if the major part of the computational grid cells are on the finest grid level, the
computational costs for both approaches are approximately the same.

Let u be the exact solution of (1)–(2) and uh be the discrete solution as defined in (13). In
[8–10, 15] it was shown that under the assumption mentioned above we have for any compact set
K ⊂Rd ×R+ ∫

K
|u(x, t)−uh(x, t)|dx dt�ch1/4 (14)

where the constant c depends only on K and the given data.
In order to present the corresponding a posteriori error estimate in the case d=2, we define for

given R,�, T (recall the definition of DR+1 through (7)):

I0 :=
{
n |0�tn�min

{
R+1

�
,T

}
M(t) :={ j |there exists x ∈Tj such that (x, t)∈DR+1}

Theorem 3.4 (Kröner and Ohlberger [3])
Assume the conditions as mentioned above and u0∈ BV (R2). Let K ⊂⊂R2×R+, �≡Lip( f ) and
choose T, R and x0 such that T ∈]0, R

� [ and K ⊂D0 (see Figure 1). Then, we have∫
K

|u−uh |�Ta0

[∫
|x−x0|<R+1

|u0−uh(·,0)|+aQ+2
√
bQ

]
(15)
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where

Q :=∑
n∈I

∑
j∈M(tn)

�tnh2j |un+1
j −unj |+2L�tn

∑
n

∑
E(tn)

(�tn+h jl)h jl |unj −unl |)

and E(tn) is the set of all edges that lie in M(tn). In the sum over E(tn), the indices j, l refer to
the triangles Tj ,Tl such that Tj ∩Tl is the corresponding edge and h jl :=diam(Tj ∪Tl).

The constants a0,a, and b are explicitly known. A corresponding result also holds in Rd with
d>2. Under suitable conditions this theorem can be generalized if we replace F(u) by F(x, t,u)

(see [3]).

4. ERROR CONTROL FOR BOUNDARY VALUE PROBLEMS

Although the study of the finite volume method applied to the Cauchy problem (1)–(2) has led to the
understanding of most of the mechanisms that govern the accuracy of this numerical method, the
initial-boundary value problem (see (16)–(18) below) is even of greater importance in applications,
and its approximation by finite volume schemes deserves an analysis.

A new difficulty for boundary value problems is that boundary values may be prescribed only
at outflow boundaries that themselves depend on the solution of the problem. This feature leads to
a more involved theory for the error analysis and, in addition, may lead to a creation of artificial
boundary layers of the finite volume approximation. In the sequel we consider an implementation
of boundary data via ‘ghosts control volumes’ (see Figure 2). This is a way to compute the
numerical fluxes at the boundary of the domain inspired by the design of the fluxes inside the
domain. This method of computation of the numerical fluxes at the boundary is classical and
ensures the convergence of the finite volume scheme to the entropy solution of problem (16)–(18)
(see [7, 21–23]).

Let � be an open convex polygonal bounded domain in Rd , d=2,3 and let T ∈R+. We consider
the following initial boundary value problem for non-linear scalar conservation laws:

ut +∇ ·F(u)=0 in �×(0,T ) (16)

u(·,0)=u0 in � (17)

u(x, t)=u(t, x) in ��×(0,T ) (18)

The flux in Equation (16) is given by the function F ∈C1(R;Rd); the functions u0∈L∞(�) and
u∈L∞(��×(0,T )) are, respectively, the initial and boundary data of the problem (16)–(18).

Of course the boundary condition in problem (16)–(18) has to be understood in a specific
sense. For general flux F and in the context of entropy solutions, problem (16)–(18) has first been
analyzed by Bardos et al. [24] in the BV framework. The notion of entropy solution given there
has been extended, in the L∞ setting, by Málek et al. [25] and Otto [6]. We use this last definition
and define the following semi Kružkov entropy pairs [26, 27].
Definition 4.1 (Semi Kružkov entropy pairs)
Set v+ =max{v,0}, v− =(−v)+. We denote by FS±

�
(v) the entropy flux associated with the entropy

S±
� (v) :=(v−�)±.
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Figure 2. The concept of ghost cells and notation for the grid.

We further denote by A, B∈R some lower and upper bounds for the data, i.e. A�u0,u�B a.e.
We set C=max(|A|, |B|), and let L be a fixed real satisfying

max{|F ′(v)|; v∈[A, B]}�L (19)

Then the unique entropy weak solution to the initial-boundary value problem (16)–(18) is defined
as follows (see [7]).
Definition 4.2 (Entropy weak solution)
A function u∈L∞(�×(0,T )) is called an entropy weak solution of (16)–(18) if it satisfies the
following entropy inequalities: for all �∈[A, B], for all �∈C∞

0 (Rd ×R+) with ��0:∫
�×(0,T )

S±
� (u)�t�+FS±

�
(u) ·∇�+

∫
�
S±
� (u0)�(·,0)+L

∫
��×(0,T )

S±
� (u)��0 (20)

Let us introduce some notation for the definition of the ghost cells and the resulting finite volume
scheme (see Figure 2). The set of internal edges Sn

int and the oriented set of internal edges En
int

are defined as

Sn
int :={{( j, l)∈ Jnint× Jnint}|S jl interior edge of Tn}, En

int :={( j, l)∈Sn
int| j > l}

Let the index set of ghost cells Jnext be such that Jnext∩ Jnint=∅ and such that for each edge S⊂��
there exists a unique pair of indices ( j, l)∈ Jnint× Jnext with �Tj ∩S= S. In this situation we denote
S jl := S. Accordingly, the set of edges located on the boundary of � is defined by

Sn
ext :={( j, l)∈ Jnint× Jnext|S jl exterior edge of Tn}

With this notation we define the finite volume schemes on bounded domains.
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Definition 4.3 (Finite volume scheme)
Set

u0j :=
1

|Tj |
∫
Tj

u0, j ∈ J 0int, unl := 1

�t

1

|S jl |
∫ tn+1

tn

∫
S j,l

u(x, t)dx dt, ( j, l)∈Sn
ext

The discrete evolution of the approximation u j of u on the cell Tj is governed by

un+1
j :=cnj −

�tn

|Tj |
∑

l∈N ( j)
f njl(u

n
j ,u

n
l ), j ∈ Jnint (21)

for all n∈{0, . . . ,N } where N ( j) now also includes the neighboring ghost indices across the
boundaries of the domain �. Given unj , we define the approximate solution uh :�×(0,T )→R by

uh(x, t) :=unj if x ∈Tj , tn�t< tn+1 (22)

We are now prepared to state the a posteriori error estimate for the finite volume approximation.

Theorem 4.4 (A posteriori error estimate Ohlberger and Vovelle [17])
Let uh be the discrete solution defined in Definition 4.3 and u the entropy solution of (16)–(18).
Furthermore, let Assumptions 3.1 and 3.3 be fulfilled. Then the following error estimate holds

‖uh−u‖L1(�×(0,T ))��(uh) (23)

with

�(uh) :=2T (N f +1) min
�,�∈R+

[
�0+�+(�t +�c)K1�+�cK

′
1(�+�)+K0

(
2

�
+ �

�

)]
Here the indicators �0,�t ,�c, and �̄ are defined by

�0=
∫

Rd
|uh(x,0)−u0(x)|dx, �t =

∑
n

∑
j∈Jn

|Tj |�tn|un+1
j −unj |

�c =∑
n

∑
( j,l)∈En

[
2(h jl +�tn)�tn

(
max

unl �a�b�unj
( f njl(b,a)− f njl(b,b))

+ max
unl �a�b�unj

( f njl(b,a)− f njl(a,a))

)]

+∑
n

∑
( j,l)∈Sn

ext

L(u j +ul −2Cm)h j�t
nh jl

�=
∫

��×(0,T )

|uh−u|d(x)dt

and the positive constants N f , K1, K ′
1, and K2 are computable (for details see [17]).
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From the error estimate (23), we deduce an a priori error estimate with the following bounds
on �0,�,�t ,�c (see [10, 15]):

�0+�+�t +�c�Kh1/2

and by choosing, for example:

� :=
(

(�t +�c)K1+�cK
′
1

K0

)−1/3

, � :=
(

K0r

�cK
′
1

)1/2

Theorem 4.5 (A priori error estimate Ohlberger and Vovelle [17])
Let uh be the discrete solution defined in Definition 4.3 and c the entropy solution of (16)–(18).
Furthermore, let Assumptions 3.1 and 3.3 be fulfilled. Then we have for uniform meshes of mesh
size h the following a priori error estimate

‖u−uh‖L1(�×(0,T ))��(uh)�Kh1/6 (24)

Here, K denotes a generic constant independent of the mesh size.

Remark 4.6 (Non-optimal order of convergence)
The error estimates in Theorems 4.4, and 4.5 are non-optimal compared with the convergence
rate h1/4 that can be proved for finite volume approximations of the Cauchy problem (cf. [15]).
Let us mention that in the special situation where F(x, t,c)=u(x, t) f (c), and f is monotone,
this estimate can be improved, and the order h1/4 is recovered (see also [28]). However, the
improvement in this special situation makes excessive use of the a priori knowledge of inflow,
and outflow boundaries and gives no hint to improve general result stated above.

Note that under suitable conditions, these results on bounded domains can be generalized if we
replace F(u) by F(x, t,u) (for details see [17]).

5. DISCONTINUOUS GALERKIN APPROXIMATIONS

A possible higher-order generalization of the finite volume method introduced in Sections 3 and 4
is the RK-DG approximation of Cockburn and Shu [29]. In the following, we analyze a generalized
semi-discrete version of this method for the Cauchy problem (1)–(2). The available theory for
RK-DG methods for nonlinear problems is limited to certain stability properties proved in [29, 30]
and to error estimates for one-dimensional smooth solutions (see [31]). The problem of showing
convergence towards the unique entropy solution for the high-order version of these methods seems
rather difficult. Although a convergence result for the RK-DG method is not available, we are
going to present a rigorous error control for DG methods that was recently obtained in [18].

In order to define the RK-DG methods, let us introduce further notations. On T we define the
space of discontinuous piecewise polynomials of degree p by

V p
h :={vh ∈ BV (Rd)|v j :=vh |Tj ∈Pp for all Tj ∈T} (25)

Let us denote �V p
h
the L2-projection into V p

h .
The semi-discrete DG-finite element scheme is the basis of the definition of RK-DG methods.
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Definition 5.1 (Space-discrete DG approximation)
uh :C1(0,T ;V p

h ) is called a semi-discrete DG approximation of (1)–(2), if

uh(0)=�V p
h
(u0) (26)

d

dt
(u j (t),v j )Tj −(F(u j (t)),∇v j )Tj +

∑
l∈N ( j)

( f jl(u j (t),ul(t)),v j )S jl =0

for all v j ∈Pp,Tj ∈T (27)

Here (·, ·)Tj denotes the local L2-inner product on Tj , (·, ·)S jl denotes the local L2-inner product
on S jl , and f jl is a monotone numerical flux on S jl satisfying Assumption 3.1.

In the literature of DG methods, the stabilization due to the ‘upwinding’ of the discrete fluxes is
usually accompanied by extra artificial ‘shock capturing’ terms as in [32–34] or limiting projections
as in [29]. The RK-DG methods introduced by Cockburn and Shu are based on a combination of
limiting projections and a Runge–Kutta discretization of (27). Therefore, in the next step we are
going to introduce limiting projections in the discretization. To this end we associate with each
time interval (tn, tn+1] a (possibly different) finite element space V p

h denoted by

V p
h,n :={vh ∈ BV (Rd)|vh |T ∈Pp for all T ∈Tn} (28)

The associated index set of Tn is denoted by Jn.
To define a local projection operator, we proceed as follows: We define vh through v j :=

�V 0
h
(v)|Tj for any v∈L2(�), i.e. vh is the elementwise average of vh . Furthermore, with each n

we associate projections �n,t
h with the following properties.

Assumption 5.2 (Projection operator)
The projection �n,t

h is supposed to be a continuous function with respect to t on the interval
[tn, tn+1]. If t ∈(tn, tn+1], the operators act �n,t

h :V p
h,n →V p

h,n and satisfy

�n,t
h (vh(·, t))=vh(t), t ∈(tn, tn+1] (29)

In addition, �n,tn

h :V p
h,n−1→V p

h,n is a projection to the new mesh, still with the property

�n,tn
h (vh(·, tn))=vh(tn) (30)

In the last equation, the elementwise average is taken in the new mesh, i.e. corresponds to the
projection �V 0

h,n
. At tn the two operators �n,tn

h and �n−1,tn

h satisfy

‖�n,tn

h (uh)−uh‖∞�‖�n−1,tn

h (uh)−uh‖∞ (31)

Properties (29), (30) lead to a conservation of mass, whereas assumption (31) guarantees that the
gradients in the discrete solution are not increased between time steps. Note that �n,t

h accounts for
both limiting projections and projections to the new spaces. We define the restriction of �n,t

h on
the element Tj by �n,t

j :
�n,t

j ≡�n,t
h in Tj ×[tn, tn+1], j ∈ Jn
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We now define the generalized semi-discrete DG approximation.

Definition 5.3 (Generalized semi-discrete DG approximation)
Let us suppose that a projection �n,t

h with the above properties is given. In addition, assume that
the discrete fluxes fi j are monotone. The function uh is called a generalized semi-discrete DG
approximation of (1)–(2), if for u−1

h :=�V p
h,0

(u0) uh satisfies:

For n=0, . . . ,N−1, unh |[tn ,tn+1] ∈C1(tn, tn+1;V p
h,n) is defined through

unh(t
n) :=�n,tn

h (un−1
h (tn)) (32)

d

dt
(unj (t),v j )Tj = − ∑

l∈N ( j)
( f jl(�

n,t
j (unh(t)),�

n,t
l (unh(t))),v j )S jl

+( f (�n,t
j (unh(t))),∇v j )Tj , for all v j ∈Pp, j ∈ Jn, t ∈(tn, tn+1) (33)

The global approximation uh ∈L∞(0,T ;V p
h,n) is defined through uh(0) :=u−1

h , and uh |(tn,tn+1] :=
unh |(tn,tn+1].

In applications, the above method is combined with Runge–Kutta time discretizations of the ode
(33) to obtain the generalized fully discrete RK-DG class of methods. This class not only includes
the method of Cockburn and Shu but also alternative choices for the limiting projections that are
motivated by the a posteriori result for (32)–(33) given follows (for more details and numerical
experiments we refer to [18, 35]).

We present an a posteriori estimate for the error ‖(u−uh)(T )‖L1 . To do that, we compare u
and uh with ũh defined as

ũh =�n,t
h uh in (tn, tn+1], n=0, . . . ,N−1 (34)

Then ‖(̃uh−uh)(T )‖L1 is an a posteriori quantity and the control of ‖(u− ũh)(T )‖L1 can be
obtained by employing Kruzkov estimates.

Note that by definition, ũh might be discontinuous at the time nodes tn . This is the case either
when the spatial mesh is modified at this node or when we decide to use different projections at
tn−1 and tn . In fact due to the definitions of uh and the projections, we have

ũh(t
n+)− ũh(t

n)=�n,tn

h uh(t
n)−�n−1,tn

h uh(t
n)=(�n,tn

h −�n−1,tn

h )uh(t
n) (35)

Before stating our main result, we introduce the following notations:

ũ j = ũh in Tj , ũn = ũh in (tn, tn+1], ũn(tn)= ũh(t
n+)

with the obvious extension for combined indexes.

Theorem 5.4 (A posteriori error estimate Dedner et al. [18])
Let uh be given by the semi-discrete generalized DG method (32)–(33). For ũh given by (34), we
have the following a posteriori error estimate

‖(u−uh)(T )‖L1(BR(x0)) � ‖(̃uh−uh)(T )‖L1(BR(x0))+‖(u− ũh)(T )‖L1(BR(x0))

� ‖(̃uh−uh)(T )‖L1(BR(x0))+�h
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where �h :=�0+√K1�1+√K2�2, �0 :=∑ j∈J 0�0, j , �i :=
∑

n
∑

j∈Jn�
n
i, j , i=1,2, and the local

contributions �ni, j are given as

�0, j :=
∫
Tj

|u0− ũ 0
j (0)| (36)

�n1, j :=
∫ tn+1

tn

∫
Tj

h j |�t ũ j +∇ · f (̃u j )|

+1

2

∫ tn+1

tn

∑
l∈N ( j)

h jl

∫
S jl

Q jl (̃u j , ũl)|̃u j − ũl |

+
∫
Tj

h j |̃un(tn)− ũn−1(tn)| (37)

�n2, j :=
∫ tn+1

tn
‖ũnj − ũnj‖L∞(Tj )

∫
Tj

|�t ũnj +∇ · f (̃unj )|

+1

2

∫ tn+1

tn

∑
l∈N ( j)

max
k∈{ j,l}‖ũ

n
k − ũnk‖L∞(S jl )

∫
S jl

Q jl (̃u j , ũl)|̃u j − ũl |

+‖ũn−1(tn)− ũn−1(tn)‖L∞(Tj )

∫
Tj

|̃un(tn)− ũn−1(tn)| (38)

Here, we used the following notation:

Q jl(u,v) := 2 f jl(u,v)− f jl(u,u)− f jl(v,v)

u−v
, h jl :=diam(Tj ∪Tl)

The error estimator in Theorem 5.4 is composed of the two parts �1,�2. The first part corresponds
to the standard estimates known for first-order schemes (see Theorem 3.4) and the second part of
the estimate corresponds to error terms, which are only present in higher-order approximations.

For a further discussion on the error estimate and for the design of an hp-adaptive variant of
the RK-DG method using this theoretical result, we refer to [18].

6. ADAPTIVE SCHEMES AND NUMERICAL EXPERIMENTS

In the sequel let us suppose that for some approximation uh of the conservation law (1)–(2) or
(16)–(18), we have an a posteriori error control of the following form:

‖|u−uh |‖K��h(uh) (39)

where the error indicators admit a localization in time and space as follows:

�h(uh)=
∑
n∈I

�nh(uh) and �nh(uh)=
∑
j∈Jn

�nj (uh)
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Here �nj (uh) are supposed to be local error indicators that are assigned to the space–time segments

T n
j ×[tn, tn+1).
In the following subsection, we are going to describe an equal distribution strategy that can be

used to design an efficient grid adaptive scheme.

6.1. Derivation of adaptive schemes from error control

The goal of an adaptive algorithm based on a posteriori error control is to choose the local grid
size in such a way that

1. the computational cost is reduced or minimized and
2. the error ‖|u−uh |‖K is below some given tolerance TOL.

One possibility to obtain such an algorithm for a given tolerance TOL and some �∈(0,1) is the
so-called equal distribution strategy. The principal idea of this strategy is to generate a mesh, such
that the local contributions �nj (uh), j ∈ Jn of the error estimator are approximately of the same
size. Starting from a given mesh, this can be achieved either by moving mesh points (see [36])
or by successive refinement and coarsening of certain elements of a given mesh. Here, we will
follow the second approach and define the method as follows:

Let a computational grid Tn−1 and an approximation un−1
h on Tn−1 at time tn−1 be given

such that

�n−1
h (uh)�

�tn−1

T
TOL

Compute Tn and an approximation unh according to the following algorithm:

1. Set Tn =Tn−1.
2. Compute unh , �nh(uh) on Tn .
3. If �nh(uh)>�tn/TTOL, then

(a) Refine or coarsen the grid locally such that for all Tj ∈Tn it holds

�nj (uh)�
�tn

T |Jn|TOL and, if possible, �
�tn

T |Jn|TOL��nj (uh)

This results in an updated grid Tn .
(b) Compute unh , �nh(uh) on the adapted grid Tn and proceed with step 3.

Else proceed with time step tn+1.

If the computational grid is adapted according to the given algorithm, the local upper bounds
of the indicators ensure that in the end

�h(uh)=
∑
n∈I

∑
j∈Jn

�nj (uh)�
∑
n∈I

∑
j∈Jn

�tn

T |Jn|TOL=TOL

and thus the error ‖|u−uh |‖K is bounded by the tolerance TOL because of the a poste-
riori error estimate (39). The local lower bounds of the indicators, on the other hand,
ensure that elements are coarsened if possible, thus leading to a minimal number of overall
mesh cells.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:333–354
DOI: 10.1002/fld



346 M. OHLBERGER

The refinement of elements is usually done by subdivision into smaller elements, e.g. bisection
of elements or subdivision into congruent subelements. Coarsening, on the other hand, is usually
the inverse of refinement and thus can only be performed for elements that were refined in a
previous step. For our simulation we used the DUNE software package that supports such local
mesh refinement via an abstract grid interface [37, 38].

Modifications and improvements of this algorithm to the approximation schemes discussed in
the previous sections can be found in [3, 17, 18]. In particular, the performance of the algorithm
can be improved if one first subdivides the elements into a significant set Tn

s and the complement
Tn \Tn

s in such a way that Tn
s collects the elements with the largest indicator values, such that

the sum of the error indicators corresponding to the elements in Tn
s is a prescribed percentage

(e.g. 99%) of the overall indicator value �n(uh). Thus, Tn
s contains all elements that significantly

contribute to the overall error. The equal distribution strategy is then applied to the set Tn
s only.

On the other hand, elements in the complement Tn \Tn
s are marked for coarsening. This strategy

is for instance advantageous for applications, where the solution is constant within certain regions
of the computational domain. A detailed description of this modification is described in [18] and
applied in the simulations corresponding to test problems two and three in the following section.

In [18] it is also discussed how the local choice of the polynomial degree of the approximate
solutions can be chosen with the help of the a posteriori error estimate given in Theorem 5.4. In
examples two and three in the following section, we used this adaptive choice of the polynomial
degree and we denote by pmax the maximum polynomial degree that was used in the simulation.

6.2. Numerical experiments

In this subsection we give some numerical experiments that underline the benefits that we get from
adaptive methods resulting from the a posteriori error estimates. The first experiment is a linear
transport problem on a two-dimensional bounded domain where the discretization and theoretical
results presented in Section 4 were used. The second example is the Buckley–Leverett problem
in one space dimension discretized with the discontinuous Galerkin method given in Section 5.
Finally, the third example is the solid body rotation with a slotted disk, a cone and a smooth
hump. As in the second example, the discontinuous Galerkin method from Section 5 was used for
discretization.

6.2.1. First example: linear transport problem. As a first example we choose a linear problem
where the inflow and outflow regions are known a priori. The example is chosen for instance as
it comes with a known exact solution. Thus, we can compare the L1-error between the exact and
the approximate solution with the error estimator �h defined in Theorem 4.4.

We look at the following initial boundary value problem in � :=(0,1)×(0,1):

ut +∇ ·(bu)=0 in �×(0,T )

u(·,0)=0 in �

u(x, t)=u(t, x) in ��×(0,T )

Then u(x, t) is constant along the streamlines of the prescribed velocity field b(x1, x2) :=(x2,−x1)�
and therefore depends only on the initial data, and on the boundary values at the inflow boundary.
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Figure 3. Color shading of the exact solution of the linear problem at t=�/4,�/2, and t=2 (top row) and
adaptive solution of the linear problem at the same times (bottom row). A color shading of the solution

together with the adaptive grid is plotted for the full upwind flux.

In our example we set

u(t, x) :=
{
1 if x ∈{0}×(0.4,0.8)

0 else

The exact solution for several times is depicted in the top row of Figure 3.
We analyze the performance of the adaptive scheme versus the same scheme on a mesh with

uniform mesh size. Therefore, in Figure 4 we plot the L1 error versus run time for uniform and
adaptive computations using the upwind flux. The comparison shows that the adaptive scheme
performs much better than the method on uniform grids. In addition, we stress that the adaptive
algorithm requires far less storage than the uniform one. For instance, in the finest computations,
the maximal number of mesh cells in the adaptive case was about 350 000, while 4 200 000 mesh
cells were used in the uniform computation. An approximate solution on an adaptive grid is given
in the bottom row of Figure 3.

6.2.2. Second example: Buckley–Leverett problem. As a second example we look at the Buckley–
Leverett equation, which is a one-dimensional model for two-phase flow in porous media where
capillary pressure effects are neglected. The unknown variable u :(−1,1)×(0,0.4)→R is the
saturation of the wetting phase within a two-phase mixture. It satisfies the non-linear conservation
law

ut +�x f (u)=0 on (−1,1)×(0,0.4), u(·,0)=u0 on (−1,1)
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Figure 4. L1 error versus run time for uniform and adaptive computations for the linear problem.

where the fractional flow rate f is given as f (s)=u2/(u2+ 1
2 (1−u)2). We look at the Cauchy

problem with the following initial data:

u0(x) :=
{
0 for x ∈(−0.6,0.2)

1 else

Thus, the solution of our Buckley–Leverett problem consists of the solution of two distinct Riemann
problems for t smaller than some critical time T ∗>0.4. The solution of each Riemann problem is
a composed wave consisting of a rarefaction wave and an attached shock.

In Figure 5 we plot the exact solution together with the approximation using our adaptive
strategy for pmax=1,2 and TOL=0.25 and 0.125. Since the structure of the solution away from
the discontinuities is very simple, the advantage of the quadratic Ansatz functions (pmax=2) is not
evident. The grid density function hardly depends on the polynomial degree since almost all grid
points are located in the shock regions. Only the kinks at the beginning of the rarefaction waves
lead to additional slight refinement. Since the highest grid resolution produced by our refinement
strategy is the same for pmax=1 and 2 and the approximation error is dominated by the shocks,
the pmax=2 version of the DG method does not lead to a more efficient scheme as can be seen
from Figure 6 where the error is plotted over Mtot, the overall number of mesh cells, summed over
all time steps. A more complicated structure of the solution—as can only be found in systems in
higher space dimension—is required to demonstrate the advantage of a hp-adaptive strategy for
non-linear conservation laws with discontinuous solutions.

6.2.3. Third example: solid body rotation. As a third example we choose the solid body rotation
introduced in [39, 40]. In order to be comparable to [39], we choose a smooth hump, a cone, and a
slotted disk as solid bodies that are rotated with constant angular speed, i.e. b(x1, x2) :=(−x2, x1)�
in � :=[−1,1]2. The initial data are plotted in Figure 7(a). For a detailed description of this model
problem, we refer to [39].
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Figure 5. Comparison of the approximate solutions obtained with the discontinuous Galerkin method
for pmax=1 (top row) and pmax=2 (bottom row) with TOL=0.25 (left-hand side) and TOL=0.125
(right-hand side) on adaptively refined grids. The approximate solutions are compared with the exact
solution (solid line) at T =0.4. The local mesh size h of the adaptive grid and the distribution of the local

polynomial degree p are plotted in the middle and bottom row, respectively.
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Figure 6. Convergence study for the discontinuous Galerkin method on adaptively refined grids (left) and
uniform refined grids (right) for pmax=0,1,2.
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Figure 7. Simulation result for the solid body rotation. The plots show the exact initial data (a), the
simulation result after one rotation with TOL=0.15 (b) and the adaptive computational grid after one

rotation (approximately 8000 elements) (c).
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Figure 8. Simulation result for the solid body rotation with TOL=0.15. The plots show
different cross sections of the approximate solution in comparison with the exact profiles

at y=−0.5 (a), y=0.5 (b), x=−0.5 (c), and x=0.0 (d).
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TOL elements average L1 error
at t = T Δ t at t = T

0.600 884 0.00268 0.0853
0.300 2115 0.00148 0.0529
0.150 7986 0.00060 0.0286
0.075 18893 0.00028 0.0162
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Figure 9. Table (a) shows the dependence of the number of elements, the average time step
size and the L1 error on the value of the prescribed tolerance TOL for the third example.
Plot (b) shows the approximate solutions for TOL=0.60, 0.30, 0.15, and 0.75 on a cross

section at y=0.5 together with the exact solution.

In Figure 7 we plotted the numerical result for the adaptive DG method, using pmax=2. The
tolerance is chosen such that the adaptive scheme resolves the bodies with about 8000 triangles.
Thus, the size of the computational mesh is comparable to the size of the uniform structured mesh
that was used in [39].

The approximate solution after one rotation for TOL=0.15 is plotted in Figure 7(b), while the
corresponding adaptively refined mesh is plotted in Figure 7(c). The distribution of the elements
shows that most of the computational costs is due to the resolution of the slotted disk, while only
moderate refinement is needed to resolve the cone and the smooth hump. In Figure 8 the solution
for TOL=0.15 is further analyzed. The plots (a)–(d) show the profile of the solution on cross
sections corresponding to y=−0.5, y=0.5, x=−0.5, and x=0.0, respectively. In comparison
with the numerical results obtained in [39], the adaptive method shows a very nice approximation
of the exact solution with even less grid cells and an unstructured mesh. We also remark that
the presented method allows for small oscillations around the discontinuous slotted disk. A study
for varying tolerances in Figure 9(b), however, reveals that the oscillations decrease with smaller
tolerances and the discontinuities get better and better resolved. Figure 9(a) shows the dependence
of the adaptive approximation on the choice of the prescribed tolerance TOL.

The results so far show that our adaptive strategy based on the a posteriori error esti-
mates from Theorems 4.4 and 5.4 leads to good schemes both for linear and non-linear test
problems.

The application of the adaptive technology presented here to systems of conservation laws is
certainly not possible on the theoretical level as our approach makes use of at least one parameter
family of entropy solutions. On the other hand, it is certainly possible to advise adaptive numerical
schemes also for systems, based on the scalar ideas. Such investigations are under consideration
and will be addressed in further contributions.
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7. FURTHER RESULTS AND DISCUSSION OF THE LITERATURE

In this section we give some references to further results and approaches concerning a posteriori
error control and adaptivity for hyperbolic conservation laws.

In the framework of the doubling of variables technique, we wish to especially refer to the work
of Makridakis et al. [20, 41, 42] where similar results to those presented in Section 3 were obtained
for MUSCL finite difference schemes in one space dimension and for finite volume relaxation
schemes. For staggered Lax Friedrichs schemes on general unstructured meshes, a corresponding
a posteriori result was obtained by Küther (see [43, 44]).

A different approach towards a posteriori error control is the usage of the Oleinik entropy
condition instead of the Kruzkov framework. This leads to stability results that can be exploited in
the analysis of the dual problem of the underlying conservation laws. Unfortunately, this approach
is restricted to one space dimension. For results in this direction, we refer to the pioneering work
of Tadmor [45] for finite difference approximations and to the article of Johnson and Szepessy
[33] for the analysis of finite element approximations.

A posteriori error estimates in negative norms (e.g. H−1) were derived by Houston et al. for
approximations of scalar conservation laws and Friedrichs systems (see [46–48]). An a posteriori
error estimate for finite volume approximations of weak solutions of Friedrichs systems was
recently given by Jovanovic and Rohde [49].

The literature on a posteriori error control and adaptive solution algorithms for RK–DG approx-
imations is rare. We refer for instance to the articles of Hartmann and Houston [50] and Larson
and Barth [51] where duality techniques were used for designing adaptive schemes. We also refer
to Houston et al. [52–54] for hp-adaptive DG methods for hyperbolic problems. Another approach
towards error control for DG methods was introduced by Adjerid et al. [55] where asymptotically
correct a posteriori estimates of spatial discretization errors were derived in one dimension for
smooth solutions.

Last but not the least, using compression algorithms from wavelet theory, efficient adaptive
multiscale finite volume methods for conservation laws were derived by Müller et al. [56, 57].
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32. Jaffré J, Johnson C, Szepessy A. Convergence of the discontinuous Galerkin finite element method for hyperbolic
conservation laws. Mathematical Models and Methods in Applied Sciences 1995; 5(3):367–386.

33. Johnson C, Szepessy A. Adaptive finite element methods for conservation laws based on a posteriori error
estimates. Communications on Pure and Applied Mathematics 1995; 48:199–234.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:333–354
DOI: 10.1002/fld



354 M. OHLBERGER

34. Cockburn B, Gremaud PA. Error estimates for finite element methods for scalar conservation laws. SIAM Journal
on Numerical Analysis 1996; 33:522–554.

35. Dedner A, Ohlberger M. A new hp-adaptive dg scheme for conservation laws based on error control. In Proceedings
of the 11th International Conference on Hyperbolic Problems, Lyon, 17–21 July 2006, Benzoni-Gavage S, Serre
D (eds). Hyperbolic Problems: Theory, Numerics, Applications. Springer: Berlin, 2008.

36. Tang T. Moving mesh methods for computational fluid dynamics. Recent Advances in Adaptive Computation,
Contemporary Mathematics, vol. 383. American Mathematical Society: Providence, RI, 2005; 141–173.

37. DUNE—Distributed and Unified Numerics Environment. http://dune-project.org/.
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52. Houston P, Süli E. hp-adaptive discontinuous Galerkin finite element methods for first-order hyperbolic problems.
SIAM Journal on Scientific Computing 2001; 23(4):1226–1252.
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